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Abstract

Rapid identification of traumatic intracranial hematomas following closed head injury represents a significant health care

need because of the potentially life-threatening risk they present. This study demonstrates the clinical utility of an index of

brain electrical activity used to identify intracranial hematomas in traumatic brain injury (TBI) presenting to the emer-

gency department (ED). Brain electrical activity was recorded from a limited montage located on the forehead of 394

closed head injured patients who were referred for CT scans as part of their standard ED assessment. A total of 116 of

these patients were found to be CT positive (CT + ), of which 46 patients with traumatic intracranial hematomas (CT + )

were identified for study. A total of 278 patients were found to be CT negative (CT - ) and were used as controls. CT scans

were subjected to quanitative measurements of volume of blood and distance of bleed from recording electrodes by

blinded independent experts, implementing a validated method for hematoma measurement. Using an algorithm based on

brain electrical activity developed on a large independent cohort of TBI patients and controls (TBI-Index), patients were

classified as either positive or negative for structural brain injury. Sensitivity to hematomas was found to be 95.7% (95%

CI = 85.2, 99.5), specificity was 43.9% (95% CI = 38.0, 49.9). There was no significant relationship between the TBI-Index

and distance of the bleed from recording sites (F = 0.044, p = 0.833), or volume of blood measured F = 0.179, p = 0.674).

Results of this study are a validation and extension of previously published retrospective findings in an independent

population, and provide evidence that a TBI-Index for structural brain injury is a highly sensitive measure for the detection

of potentially life-threatening traumatic intracranial hematomas, and could contribute to the rapid, quantitative evaluation

and treatment of such patients.
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Introduction

Traumatic intracranial hematomas presenting to the

Emergency Department (ED) following closed head injury must

be rapidly diagnosed because of the potentially life-threatening risk

they present. Such hematomas can be seen in cases that appear mild

by presenting symptoms and apparent neurological status (e.g., high

Glasgow Coma Score [GCS]). The current ‘‘gold standard’’ for initial

assessment and triage is noncontrast CT scan, performed as soon as

possible following injury. The use of head CT scan has several sig-

nificant drawbacks including time, radiation exposure, and patient

safety. That is, many patients are unnecessarily exposed to CT

radiation, considering that specificity is poor for existing symptom-

based guidelines for CT scanning (3.0–12.7% in mild traumatic

brain injury [mTBI] populations1,2). Further, the increased use

of CT scanning in emergency settings often imposes a delay on

making clinically important triage decisions.

The use of the BrainScope device in development for the iden-

tification of traumatic intracranial hematomas does not have these

drawbacks. Prichep and colleagues3,4 described the development

of TBI-Index using a binary classification algorithm based on

selected quantitative features of brain electrical activity recorded

from five electrodes placed on the forehead. In a prospective val-

idation study (funded in part by the Department of Defense,
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contract #W911QY-12-C-0004, Assessment of Head Injury in the

Emergency Department) using such an algorithm (Genetic algo-

rithm, GA), high sensitivity (85.3%, 95% CI 78.8, 90.4) and negative

predictive value (NPV) (96.5–92.2% at 10–20% prevalence) were

obtained for identification of CT positive (CT + ) TBI in a large

population (n = 552) of mTBI patients. Clinical utility has been

demonstrated in multiple publications that have reported high sen-

sitivity in discriminating between CT + and CT negative (CT - ) ED

mTBI patients (92.4–94.7%)5,6 and have shown to have specificity

more than double that seen using the New Orleans Criteria (NOC) in

such populations (TBI-Index was 49.4% and NOC was 23.5%).6

In these studies, CT scans were evaluated by subjective visual

inspection by an experienced neuroradiologist. Although studies of

inter-rater reliability are few, they report poor diagnostic concor-

dance between raters, especially in the identification of different

etiologies of TBI (up to 50% failure),7,8 which raises concerns

because the CT scan is generally regarded as the ‘‘gold standard.’’

Additional quantitative measurements of brain injury have been

used to more objectively define the magnitude of injury,9 as well as

to aid in more objective selection of patients for research proto-

cols.10 Quantitative measurements of the volume of blood within

the hematoma, performed with operator-defined region of interest

segmentation,11 is one such method.

Using the TBI-Index, Hanley and colleagues12 reported the ac-

curacy of identification of traumatic hematomas in a retrospective

sample of brain-injured patients (n = 38). These results showed high

sensitivity (100%) and specificity (66%). Results were not influ-

enced by the distance of the bleed from the recording electrodes,

type of hematoma, or volume of the bleed. Other methods described

in the literature (such as those based on near-infrared spectroscopy

[NIS]) have significant clinical limitations of use based on depth,

volume, and type of hematoma.13–16

The present study prospectively evaluates the clinical utility of

the TBI-Index of brain function for the identification of the pres-

ence of intracranial hematomas in an independent ED brain-injured

population.

Methods

Patient population

Eleven ED sites participated in patient recruitment for the
study from a consecutive sample of patients presenting following
a closed head injury and meeting the inclusion/exclusion criteria
described subsequently. Clinical sites included: Barnes Jewish
Medical Center, Detroit Receiving Hospital, University of Vir-
ginia Medical Center, University of Maryland Medical Center
(R. Adams Cowley Shock Trauma Center), Sinai-Grace Hospital,
Brooke Army Medical Center, University of Rochester Strong
Memorial Hospital, Duke University Hospital, Hartford Hospital,
Sinai Grace Hospital, and Inova Fairfax Hospital. From this
sample, 46 patients who were confirmed to have intracranial
bleeding ( ‡ 1 cc), based on blinded, adjudicated measurements of
ED CT scans, were selected for study. Those with such hemato-
mas represented 40% of the the CT + population (n = 116) iden-
tified in the 394 cases referred for CT. A total of 278 CT - mTBI
patients were selected from the same sample of ED brain-injured
patients, and used as controls. mTBI was defined as a closed head
injury, with or without loss of consciousness or amnesia, and with
a GCS > 8, (with all but one patient with GCS between 14 and 15).

All sites received approval from their respective Human Sub-
jects Research Committees, and written informed consent was
obtained prior to testing of all subjects. Assessment of the capacity
of the subject to give informed consent was performed using the
Conley criteria.17

Inclusion/exclusion criteria

Male and female patients between the ages of 18 and 80 years
who presented to the ED after a closed head injury and who had a
CT scan of the head ordered as part of their clinical evaluation were
eligible for inclusion. Patients were excluded if clinical conditions
would not allow placement of the electrodes, or if they were ob-
tunded as a result of intoxication to the point where they could not
provide informed consent. In addition, patients with known psy-
chiatric disorders, including chronic drug or alcohol dependence
disorders, chronic seizure history, or mental retardation, or who
were currently taking medication affecting the central nervous
system (CNS) on a daily basis for a chronic psychiatric condition,
were not eligible for the study. If the head injury occurred fol-
lowing a seizure, the patient was not a candidate for this study.

CT scans

All head CT scans were noncontrast, and were reviewed by a
three member panel of independent experienced neuroradiologists
(blinded to clinical and electroencephalographic [EEG] data), and
positive CT findings were determined by majority rule. The CT +
reports in these patients included all intracranial hematomas, con-
tusions, subarachnoid hemorrhages, cortical edema, and combina-
tions of these etiologies. All but one CT scan were performed
within 23 h of the EEG data acquisition, with a mean of 5.03 h,
(85% were < 12 h, and were in the time frame of the standard of
care practiced at the ED site of acquisition).

The neuroradiological adjudicators also scored all CT scans
using the Marshall Scale (MS) scoring system.18 The MS, used
largely by neurosurgeons, rates the severity of CT abnormality
using six categories (I–VI), based largely on volume of blood and
midline shift.19 Although the MS is relatively insensitive to gra-
dations of neurological severity in cases in which neurosurgical
intervention is not indicated, and is not used routinely in ED as-
sessment, it is applied here as a measure of the mild nature of the
CT abnormalities in the population of study.

Blood volume measurements

Because of concerns about the subjective nature of CT scan
readings when evaluated conventionally by visual inspection and
the poor inter-rater and within-rater reliability reported in the lit-
erature, in this study we used a method for quantification of the
severity of the hematoma.

The volume of blood and distance from recording electrodes
were measured by blinded independent experts using a published
method for volume measurement,11 in the same manner as has been
done in the previously published work, and which was described in
detail by Hanley and colleagues, cited earlier.12 Measurements of
intracranial hematomas were calculated by two independent neu-
roradiologically trained technician readers (A.M.), blinded to the
EEG results and adjudicated by a third reader (D.H.) when required
by discrepancy. Each hematoma was classified in terms of the
lobe(s) compromised (frontal, parietal, temporal, or occipital),
hemisphere affected (left or right), and hematoma type (epidural
[EDH]; subdural [SDH]; or intracerebral [ICH]). Quantitative
measurements of the volume of blood within the hematoma were
performed with operator-defined region of interest segmentation as
described by OsiriX11 (see Fig. 1). In instances of multiple hema-
tomas, a single volume was attributed to each unique bleeding lo-
cation. When a single bleed spanned multiple lobes, the volume was
indicated in the lobe in which the epicenter was localized. It is
important to note that subarachnoid hemorrhages (SAH) were not
assigned a volume. The distance of the bleeding event from the
location of the EEG electrodes (midpoint between FP1 and FP2)
was also evaluated, to assess whether using only frontal electrodes
influenced accuracy of detection. Two linear measurements (mm)
were performed for each unique bleeding event, one to the shortest
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distance from the electrodes to the bleed, (using FP1 or FP2, de-
pending upon the lobe of the bleed); and the second corresponded to
the distance from the same sensor to the epicenter of the bleed. Only
patients with hematomas with blood volumes ‡ 1 cc were consid-
ered candidates for this study.

Electrophysiological data acquisition and analysis

Five to ten minutes of eyes closed resting EEG was recorded on
a handheld device. EEG recordings were made from five frontal
electrode sites of the International 10/20 system referenced to
linked ears, using a disposable headset that optimized ease and
standardization of placement. Recording sites included: FP1, FP2,
AFz (located just anterior to Fz on the forehead, below the hair-
line), F7, and F8. All electrode impedances were below 10 kO.
Amplifiers had a bandpass from 0.3 to 250 Hz (3 dB points). The
EEG data were subjected to automatic artifact rejection algo-
rithms for identification and removal of any biologic and non-
biologic contamination, such as that from eye movement or
muscle movement. Details of these algorithms are given else-
where.3 When an artifact was identified in any channel, data from
all channels at that time point were removed. Artifact-free data
(60–120 sec) were concatenated after removal of artifact, with the
minimum for any artifact-free segment being 2.5 sec. Sufficient
artifact-free data were obtained from all study subjects. EEG re-
cording was made as early as was practically possible without
interfering with the clinical workup of the patient, with the vast
majority ( > 85%) tested within 12 h of injury.

The artifact-free EEG data were submitted to offline feature
extraction, and the features were input to an independently devel-
oped linear discriminant classifier function described previously
and in detail elsewhere (see Prichep et al.4), which had high sen-
sitivity and specificity for distinguishing patients with structural

brain damage (CT + ). This binary discriminant classification
function was derived using an evolutionary algorithm.20 An evo-
lutionary algorithm performs a stochastic search (which involves
randomness from one iteration to the next) and evaluates a series of
candidate solutions, in which each new candidate is informed by
high-performing predecessors, similar to genetic evolution.21–29

The final classifier function consists of a weighted combination of
selected linear and nonlinear features that reflect brain electrical
activity, which mathematically describes traumatic structural brain
injury as distinguished from normal or concussed brain activity.
The patients in this study were completely independent of the da-
tabase used to develop the classification algorithm. Each patient’s
brain electrical activity data were submitted to the algorithm off
line, without any information about the patient’s clinical status. In
addition to the binary classification output (TBI-Index), there was a
continuous discriminant score, which was used in analyses that
explored the correlation between such scores and blood volume and
distance measurements described previously.

Results

The 46 hematoma subjects (28 males and 18 females) were

compared with 278 control CT - mTBI patients. The mean age for

the hematoma group was 48.5 years (19.1–79.1) and the mean age

for the CT - controls was 41.4 years (18.5–80.5). Eighty-three

percent (38/46) of the CT + hematoma group had GCS scores of 15

(normal), with a mean of 14.7 (SD = 0.96), with only one patient’s

GCS < 14, and 98.9% (274/277) of the CT - control group had

GCS scores of 15, with a mean of 14.88 (SD = 1.38), and there were

no cases with a GCS < 14. All cases were scored using the Marshall

Score for grading the severity of the CT + finding. Forty cases

(87%) were Marshall Score II, three had a score of III, two had a

FIG. 1. Representation of the perimeter of a subdural (left panel, red) and an intracranial hematoma (right panel, pink). The volume
was calculated by multiplying the area of each region of interest by the slice thickness.

IDENTIFYING HEMATOMAS USING BRAIN ELECTRICAL ACTIVITY 19

http://online.liebertpub.com/action/showImage?doi=10.1089/neu.2014.3365&iName=master.img-000.jpg&w=490&h=304


score of IV, and one had a score of V (requiring neurosurgery).

CT - controls all had Marshall Scores of I.

Neuroradiological findings

The 46 hematomas were located throughout lobes and hemi-

spheres, with 33% (15/46) involving only one lobe, 30% (14/46)

involving two lobes, 26% (12/46) involving three lobes, and 11% (5/

46) involving all four lobes. It was of note that the frontal lobes were

involved most often, in 67% (31/46) of the cases, and occipital lobes

were involved least often, only in 20% (9/61) of the cases. Seventy-

six percent (35/46) involved bleeds in only one hemisphere and

24% (11/46) were bilateral bleeds. The 46 hematomas included: 1

EDH, which was accompanied by a SAH; 23 SDH, 14 of which also

had a SAH; 14 additional subdural hematomas that also had an ICH,

11 of which also had a SAH; and 8 ICH, 5 of which also had a SAH.

Figure 2 shows the distribution (as a percentage of all hematomas)

of the classifications of the hematomas in the study population.

Total blood volumes < 1cc were not included in this sample.

The average volume of blood summed across regions was 16.4 cc

(SD = 36.43, range 1.14–235.38). The largest single bleed with a

volume equal to 235.38 cc, was an outlier to the distribution of vol-

umes measured. Without this individual the mean for summed vol-

umes across regions was 11.63 cc (SD = 15.60, range 1.26–74.96).

The mean distance from the recording electrodes to the closest blood

measured was 42.07 mm (SD = 28.03) and to the epicenter of the

bleed was 73.25 mm (SD = 36.41), with a range of 17.29–160.10 mm.

The mean difference between edge and epicenter of the bleed was

30.72 mm (SD = 31.23, range 0.65–125.35mm).

TBI-Index

Table 1 shows the contingency table for he accuracy of the TBI-

Index for discriminating the hematoma patients from the mTBI

CT - patients.

Of the 46 subjects with hematomas, 44 were classified as posi-

tive by the TBI-Index. Of the 278 CT - mTBI controls, 122 were

classified as negative by the TBI-Index. Therefore, using the TBI-

Index to determine classification, sensitivity to hematomas was

95.7% (95% CI = 85.2, 99.5), and specificity was 43.9% (95%

CI = 38.0, 49.9). Because CT + hematoma patients were an en-

riched population, the NPV and positive predictive value (PPV)

were not calculated.

Although the algorithm is a binary classifier function that

compares discriminant scores to a previously independently de-

termined threshold, we used the discriminant scores for additional

analyses. The mean discriminant score for the hematoma group

was 68.10 (SD = 25.98), and the mean for the CT - controls was

33.52 (SD = 28.37). Discriminant scores for the hematoma CT +
patients were significantly higher than those for the CT - controls

(t = - 7.49, p < 0.0001).

A regression analysis among the continuous discriminant score

and the volume of the bleed and the distance from the recording

electrodes and the presence or absence of accompanying SAH was

also studied. No significant correlations were found between the

continuous discriminant score and the volume of blood present for

the largest single region (F = 0.179, p = 0.674) or for the sum or total

volume across regions (F = 0.868, p = 0.354). There were also no

significant differences found between the discriminant score and

the shortest distance to the bleed (F = 0.045, p = 0.833), or to the

epicenter of the bleed (F = 0.862, p = 0.358). The lack of correlation

suggests that the TBI-Index was not influenced by the distance of

the hematoma from the recording electrodes, or by the volume of

the bleed. There were no significant differences between discrim-

inant scores in hematomas with or without accompanying SAH

(t = 0.48, p = 0.64).

Discussion

The present study is a prospective validation of retrospective

results previously reported by Hanley and colleagues,12 in an en-

tirely independent population of ED closed head injured patients

with traumatic hematomas. These results lend strong support to the

important conclusions of the prior study, showing that a TBI-Index

of brain function/dysfunction can be used to correctly identify ED

mTBI patients with traumatic intracranial hematomas seen on CT

scan. The current study goes beyond the prior report in several

important ways, foremost being the importance of using a pro-

spective independent population; and further, this population was

also independent of the training of the algorithm used to determine

the classification of the patients. Further, the target population in

this study was a subset of brain-injured mTBI patients who were

found to have a traumatic hematoma with blood volume ‡ 1cc, but

who were referred for CT scan with relatively low suspicion of

brain injury, utilizing current standards based on subjective clinical

criteria. The use of a minimum criterion (above the level that could

be considered artifact) for the presence of blood volume in these

cases helps to target the assessment of performance on the correct

FIG. 2. Venn diagram of relative distribution of CT findings
(location/etiology) in the hematoma population. Numbers shown
are the percentage of the total hematoma population. The small
gray circle represents the one epidural hematoma (EDH) in this
population. ICH, intracerebral hematoma; SAH, subarachnoid
hemorrhage; SDH, subdural hematoma.

Table 1. Contingency Table

for Classification by TBI-Index

Structural abnormality

Classification Present (CT + ) Absent (CT - )

Positive 44 156
Negative 2 122

TBI, traumatic brain injury.
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identification of TBI patients who are at risk for potentially life-

threatening bleeds and who would likely require further clinical

action. The stratification of risk in such cases requires high sensi-

tivity, low tolerance for false negatives at the expense of false

positives and lower specificity. It is noted that specificity in the

high 40s represents the potential to reduce CT scans in those in

whom scans would be found to be negative, and is much higher than

the reported specificity of symptom-based guidelines for selection

of those in need of CT scans, which are reportedly in the teens.30

Quantitative features of brain electrical activity (QEEG) used in

the BrainScope technology have been reported in the literature to

be sensitive to changes in brain activity associated with TBI.31–33

Further, changes in connectivity reported in TBI using diffusion

tensor imaging (DTI) are consistent with the phase synchrony ab-

normalities reported using QEEG.34 The features contributing most

to classification algorithms used in this study included those rep-

resentative of measures that reflect changes in power and frequency

distributions, as well as those features that measure disturbances in

connectivity between regions (including coherence, phase syn-

chrony and asymmetry), and ratios of these quantities such that the

numerator and denominator may come from different bands and

channels, in order to capture temporal and spatial relationships in

brain activity among different regions and frequency bands. It is of

note that because this study used an existing classification algo-

rithm which was a weighted combination of specific features, other

features were not explored. The fact that the vast majority of the

subjects (*95%) in this study were classified as abnormal on this

discriminant algorithm suggests that these features are useful in

describing the changes in brain electrical activity that occur with

such traumatic structural injuries, and well reflect the underlying

pathophysiology hypothesized in the scientific literature for struc-

tural and functional brain injuries sustained in TBI. This sensitivity

to both structural and functional brain injury may also relate to the

high number of false positives identified by the algorithm.

Other attempts to identify traumatic hematomas use near-infrared

probes held to regions of the scalp. The sensitivity of such devices is

dependent on the depth (e.g., < 2.5 cm from the brain surface) and

volume (e.g., > 3.5 mL) of the bleed, and are therefore limited in

clinical utility.36 When bleeds do not meet the criteria, sensitivity is

drastically decreased. In contrast, strong evidence was presented

herein that the TBI-Index was not influenced by the distance of the

bleed from the EEG recording electrodes. It was also sensitive to a

wide and clinically important range of bleed volumes. Therefore, this

radiographic evaluation of bleed type and location is consistent with

the hypothesis that the TBI algorithm can identify all types of in-

tracranial bleeding.

Limitations

The fact that there was only one epidural EDH in the study

population is a limitation on the ability to study relationships to

EDH location. In addition, as has been noted in previous work, the

lack of a ‘‘gold standard’’ for the CT - group is another weakness

of such studies. Questions related to generalizability exist as a

consequence of exclusion rules and the requirement that all subjects

be capable of providing informed consent. Although obtunded

subjects were excluded, the presence of drugs and/or alcohol per se

were not criteria for exclusion, and such subjects were not found to

perform differently on the algorithm. Although not the study group

targeted, the performance of the algorithm in more obtunded pa-

tients, including those with lower GCS scores, would be important

for further study. Future studies might explore the potential utility

in serial recordings over time to access sensitivity to progressive

bleeding events.

Conclusions

This study was an independent replication of a prior retrospec-

tive report demonstrating the accuracy of using a classification

algorithm based on brain electrical activity to identify traumatic

hematomas in the mTBI population in the ED. This independent

prospective validation of such technology is critical in the assess-

ment its potential clinical utility. Employing a blinded quanititative

measurement of blood volume, a group of traumatic hematomas

with blood volume ‡ 1 cc were selected for study and compared

with a group of CT - controls, thus focusing the study on those

mildly presenting cases (98% with GCS of 14–15) in whom clinical

interventions or more intensive follow-ups are indicated. High

classification sensitivity (95.7%) and specificity (43.9%) were

obtained using this algorithm. Further, performance was indepen-

dent of the distance of the hematoma from the recording electrodes

and the volume of the bleed ( ‡ 1 cc). Specificity, although in the

40s, was substantially higher than that obtained using existing

symptom-based guildelines and could result in a large reduction in

referrals for scanning compared with the current standard of care.

The potential clinical utility of such a technology is high in situa-

tions with limited access to CT, situations requiring rapid triage and

situations with concurrent severe multisystem injury, which are all

areas requiring rapid identification of traumatic intracranial bleeds.
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